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Abstract. Decomposition based algorithms have become increasingly
popular for solving multi-objective problems. However, the effect of s-
calarising functions in decomposition based algorithms is under-explored.
This study analyses the search behaviour of a family of frequently used s-
calarising functions— the Lp weighted approaches, and identifies that the
p value corresponds to a trade-off between the Lp approach’s search abil-
ity and its robustness on Pareto front geometries. That is, as the p value
increases, the search ability of the Lp approach decreases whereas its ro-
bustness on Pareto front geometry increases. Based on this observation,
we propose to use Pareto adaptive scalarising functions in decomposition
based algorithms, where the p value is adaptively fine-tuned based on an
estimation of the Pareto front shape. MOEA/D using Pareto adaptive
scalarising functions (MOEA/D-par) is tested on a set of problems (with
up to seven objectives) encompassing three basic Pareto front geometries,
i.e., convex, concave and linear, and is shown to outperform MOEA/D
using Chebyshev function on all the test problems.

Keywords: Multi-objective optimization, Evolutionary computation, De-
composition, Scalarising function. Pareto adaptive

1 Introduction

Multi-objective optimisation problems (MOPs) arise in many disciplines such as
engineering, finance, logistics and control systems [1], where multiple objectives
must be simultaneously optimised. Often objectives in a MOP are in compe-
tition with each other, and thus, the optimal solution set of MOPs is not a
single solution but comprises of a set of trade-off solutions. Multi-objective evo-
lutionary algorithms (MOEAs) are well suited for solving MOPs since (i) their
population-based nature leads naturally to the generation of an approximate
trade-off surface in a single run; and (ii) they tend to be robust to underlying
objective function characteristics.

During the last two decades, a variety of MOEA approaches has been pro-
posed. These approaches can be categorised into three main classes: Pareto-
dominance or modified dominance based algorithms, e.g., MOGA [2], NSGA-II
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[3], PICEA-g [4]; Performance indicator based algorithms, e.g., IBEA[5], HypE
[6]; and decomposition based algorithms, e.g., CMOGA [7], MSOPS [8], MOEA/D
[9]. Amongst these approaches, decomposition based algorithms become increas-
ingly popular recently. Decomposition based algorithms decompose a MOP into
a set of single objective problems by means of weighted scalarising functions,
or a set of simple MOPs [10, 11] and optimise them in a collaborative manner.
Compared with the other two types of algorithms, decomposition based algo-
rithms have a number of advantages such as high search ability for combinatorial
optimisation, computational efficiency on fitness evaluation and high compati-
bility with local search [9, 12–14]. The seminal decomposition based MOEA, i.e.,
MOEA/D [9], that popularised this method, has been used in many real-world
applications [15]. Despite these advantages, the performance of decomposition
based algorithms is arguably dependent on the specification of weights[16] and
scalarising functions [17]. The choice of suitable weights and scalarising functions
is typically problem-dependent and therefore is difficult if no information about
the problem characteristics is known before the search proceeds.

Regarding the choice of weights, we have known that when the Pareto front
geometry of a MOP is known a priori, an optimal distribution of weights for
certain scalarising function can be identified [16, 18]. Otherwise, a suitable set of
weights can be configured adaptively. A number of effective methods have been
proposed for this purpose, for example, co-evolving weights with solutions [19,
20], using Pareto adaptive weights [21], adjusting weights adaptively based on
an estimation of Pareto front geometry [22–24]. Regarding the choice of scalar-
ising functions, although we have known: for example, the weighted Chevbshev
is able to find solutions on both convex and non-convex regions whereas the
weighted sum cannot [25]; the weighted sum can obtain better results than the
weighted Chevbshev on multi-objective knapsack problems [9], this is still far
from being well understood. It is in general unclear what the relation is between
different scalarising functions; and how an appropriate scalarising function can
be identified for a new problem. Towards a better understanding of the effect
of scalarising functions in decomposition based algorithms as well as unlocking
the aforementioned issues, in this study we analyse a family of frequently used
scalarising functions, i.e., the Lp weighted approaches in terms of their search
ability and their robustness on the Pareto front geometry. Moreover, based on
the analysis, we propose to use Pareto adaptive Lp scalarising functions in de-
composition based algorithms so as to enhance the algorithm’s performance.

The remainder of this paper is organised as follows: in Section 2 some back-
ground knowledge about decomposition based approaches, is provided. Section
3 elaborates the effect of Lp scalarising functions and how to choose a suitable
Lp scalarising function. Experiments and discussions are provided in Section 4.
Finally, Section 5 concludes the paper and identities future studies.
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2 Decomposition approaches

Without loss of generality, a minimisation MOP is defined as,

min
x

F (x) = (f1 (x) , f2 (x) , · · · , fm (x))

subject to x ∈ Ω
(1)

where m is the number of objective functions (generally, m > 2); x is a vector in
the decision (variable) space Ω. Rm is the objective space. F : Ω → R

m consists
of m real-valued objective functions that are to be minimised.

Decomposition based approaches decompose a MOP into a set of single ob-
jective problems defined by means of scalarising functions with different weights.
The optimal solution of each single objective problem corresponds to one Pareto
optimal solution of a MOP [26]. The weight vector defines a search direction
for the scalarising function. Diversified solutions can be obtained by employing
different search directions.

A variety of scalarising functions can be used in decomposition based algo-
rithms [26]. The weighted sum and the weighted Chebyshev from the family of
weighted Lp scalarising functions are two of the most popular ones. Mathemat-
ically, the weighted Lp scalarising function can be written as,

gwd (x|w, p) =

(

m
∑

i=1

λi (fi (x)− z∗i )
p

)
1

p

, p > 0 λi = (1/wi)
p (2)

where z∗ = (z1, z2, · · · , zm) is the ideal point; w = (w1, w2, · · · , wm)
T

is
a weighting vector and

∑m

i=1
wi = 0, wi ≥ 0; The w determines the search

direction of the scalarising function. Note that whether the obtained Pareto
optimal solution is along the search direction or not is also influenced by the
Pareto front geometry [16, 27]. The weighted sum and weighted Chebyshev are
derived by setting p = 1 and p → ∞, respectively.

In addition, decomposition based algorithms combine different objective func-
tion values into one scalar value. These objectives might have various units of
measurement, and/or scaled disparately. It is therefore important to rescale dif-
ferent objectives to dimension-free units before aggregation. Typically, the nor-
malisation procedure transforms an objective value fi by

f i =
fi − z∗i

znadi − z∗i
(3)

If the z∗i and znadi (the nadir point) are not available, the smallest and largest
fi of all non-dominated solutions found so far could be used instead.

3 The choice of a suitable Lp scalarising function

3.1 Analysis: property of different Lp scalarising functions

This section analyses the property of different Lp scalarising functions, that is,
the trade-off between their search ability and their robustness on Pareto front
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(a) (b)

Fig. 1. Contour lines of the weighted sum (a) and weighted Chebyshev (b) scalarising
functions

geometries [28]. Inspired by [29], we first look at two special cases, i.e., the
weighted sum and the weighted Chebyshev. Fig. 1 shows contour lines of the
two scalarising functions in a bi-objective case with ideal point at the origin and
weight vector w = (0.5, 0.5). The objective space is divided into two sub-spaces
by the contour line. Solutions in one sub-space are better than solutions on the
contour line while solutions in the other sub-space are worse. Solutions that lie
on the same contour line have the same scalar objective value. In Fig. 1, solution
A is the optimal solution of gwd (x| (0.5, 0.5) , 1) and gwd (x| (0.5, 0.5) ,∞).

The contour line of the weighted sum approach is a line, and the contour line
of the weighted Chebyshev approach is a polygonal line (with vertical angle).
According to the shape of the contour line we can observe that for the weighted
sum approach the size of a better region equals to half of the whole objective
space regardless of the number of objectives. This indicates that the probabili-
ty of replacement of an existing solution by a newly generated solution always
decreases from 1

2
to 0 as the search progresses. The maximal probability of re-

placement (i.e., 1

2
) is not influenced by the number of objectives. In this sense,

the search ability of the weighted sum approach is not affected by an increase
in the number of objectives. With respect to the weighted Chebyshev function,
a better region roughly equals to

(

1

2

m)

of the m-dimensional objective space.

This indicates that the maximal probability of replacement is
(

1

2

m)

. Compared
with the weighted sum approach, the maximal probability of replacement signifi-
cantly decreases as the number of objective increases. In other words, the search
ability of Chebyshev scalarising function deteriorates as the number of objec-
tives increases [28, 30]. However, it is suspected that the search ability of the
Chebysheve scalarising function is comparable to the Pareto-dominance relation
as claimed in [28]. Our preliminary experiments show that compared with the
Pareto dominance, solutions selected by the Chebyshev function are more likely
to be closer to the ideal point [31]. Moreover, it has been widely demonstrated
that decomposition based algorithms (even using random weighted Chebyshev
functions) outperform Pareto-dominance based algorithms on many-objective
problems [14, 19].
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Fig. 2. Contour lines of the Lp scalarising function with different p values.

Contour lines of the Lp scalarising functions with different p values are shown
in Fig. 2. We can observe from the figure that the volume enclosed by the contour
line and the ideal point decreases as p increases (a calculation of the volume can
be referred to [28]). This indicates that as p increases, the probability of finding
a better solution (measured by the Lp approach) decreases, that is, the search
ability of the Lp scalarising function decreases. This observation is also experi-
mentally demonstrated by applying MOEA/D with L3, L7 and L∞ scalarising
functions to solve the 4 objective WFG4 [32] problem whose Pareto optimal front
is a hyper-sphere. Each of the algorithm instantiations is run for 31 independent
runs. The mean hypervolume (HV ) values and the generation distance (GD)
values over generations are plotted in Fig. 3. We can clearly observe from Fig.
3 that MOEA/D with p = 3 performs the best, followed by p = 7, and then
p → ∞, i.e., the weighted Chebyshev function.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

M
e

tr
ic

 v
a

lu
e

s

GD: p=3
GD: p=7
GD: p=Inf
HV: p=3
HV: p=7
HV: p=InfGD results

HV results

Fig. 3. (Colour online) The performance of MOEA/D using the p = 3, p = 7 weighted
Lp scalsrising functions and the weighted Chebyshev function on the 4-objective WFG4
problem: the mean HV and GD values of over generations.
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(a) weighted sum (b) weighted Chebyshev

Fig. 4. Behaviours of the weighted sum (a) and Chebyshev (b) scalarising function on
non-convex Pareto front.

As previously mentioned, the weighted sum function may not be able to
find all the Pareto optimal solutions in the case of non-convex PF s [26, p. 79],
whereas the Chebyshev scalarising function can find solutions in both convex
and non-convex regions, see Fig. 4. Upon closer examination, we can imagine
that all the Lp scalarising functions except for the Chebyshev, face difficulties in
searching for solutions in a non-convex region. To be more specific, a weighted
Lp scalarising function can find solutions along certain search direction in a non-
convex region only if the curvature of its contour line is larger than the curvature
of the PF shape. Otherwise the selected scalarising function suffers from the non-
convex geometry issue. Since the curvature of the Chebyshev function is ∞, it
is able to find Pareto optimal solutions for any type of geometries. For example,
assuming that the PF is a circle (quadratic) in the first quadrant, see Fig. 5. In
order to find the Pareto optimal solution x along the search direction (0.5, 0.5),
the Lp with p > 2 should be used, e.g, p = 3.

(a) p = 1 Failed (b) p = 2 Threshold (c) p = 3 Successful

Fig. 5. Searching the same solution using different Lp functions.

Overall the search ability of a Lp scalarising function and its robustness
on Pareto front geometries are a trade-off— the higher the search ability, the
lower the robustness. If the Pareto front geometry is known a priori, we will be
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able to determine a suitable Lp scalarising function by taking into account the
curvature of the Pareto front. For example, for a search direction wj , we can set
the p value being larger than the curvature of the segmented Pareto front along
wj . However, if the Pareto front geometry is unknown, we could set the p value
based on the estimated Pareto front geometry.

3.2 Methodology: estimation of the Pareto front geometry on line

We have analysed the property of different Lp scalarising functions, and have
identified that the choice of a suitable p value is determined by the Pareto front
geometry. By a suitable Lp scalarising function, we mean that its search ability is
maximised, and simultaneously, it guarantees that any Pareto optimal solution
can be obtained for a certain weight. This section describes in elaborate detail
how a suitable Lp scalarising function is determined. The key issue here is to
effectively estimate the Pareto front geometry.

A number of methods are available in the literature for estimating the Pareto
front geometry. Here, we borrow the idea from [33, 21], that is, approximating
the Pareto front using a family of reference curves:

{(y1)
α + (y2)

α, · · · , (ym)α = 1; yj ∈ (0, 1], α ∈ (0,∞)} (4)

The family of curves as shown in Fig. 6 possesses the following properties: i) if
α > 1, the curve is a concave; ii) if α < 1, the curve is convex; and iii) if α = 1,
the curve is linear.
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Fig. 6. Illustration of reference curves for α = 1

3
, 3

4
, 1, 2 and 4 in 2-objective space.

Next we describe how the PF is associated with one of the curves. The
pseudo-code is presented in Algorithm 1. First we initialise a set of candidate p
values, and store them in a set P (line 1); Then we normalise solutions within the
range [0, 1] (line 2). Next for a search directionwj , we identify its T neighbouring
solutions, denoted as Q (line 4). These neighbouring solutions are the current
solutions of the neighbouring problems. The parameter T is the same as the
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selection neighbourhood size in MOEA/D [9]. We compute the Eq. (5) for each
candidate p value. The smaller the h(p,Q), the better the solutions Q match
the reference curve. The p is determined as the value that produces the second
smallest h(p,Q) (lines 5 and 6). The reason for not choosing the p associated
with the minimal h(p,Q) is that the curvature of Lp function is required to be
larger than the curvature of this segmented PF shape, i.e. p > α, see Fig. 5.
In addition, we include a pre-defined large number, e.g., 1000, in the set P . If
h(Q, 1000) is found to be the minimal, p is set to ∞, i.e., the Chebyshev function
is used instead (lines 7-9).

h (p,Q) =
∑

∀xk∈Q





∑

i=1,...,m

(

fi
(

xk
))p

− 1





2

, p ∈ P (5)

Algorithm 1: Selecting a suitable Lp scalarising function

Input: non-dominated solutions available Q, neighbourhood size, T
Output: p value.

1 Initialise the candidate Lp functions, e.g., P = { 1
2
, 2

3
, 1, 2, 3, ..., 10, 1000};

2 Normalise solutions within the range [0, 1];

3 foreach search direction, wj do

4 Find the T neighbouring solutions, Q, of the search direction wj ;
5 Compute the h(p,Q) for each candidate p;
6 Find the second smallest h(p,Q) and identify the corresponding p value;
7 if p equals to a pre-defined large value in the P then

8 using the Chebyshev function instead, i.e., p←∞;
9 end

10 end

4 Experiments and discussions

This section examines the effect of Pareto adaptive scalarising functions. We in-
corporate it into the state-of-the-art decomposition based algorithm, i.e., MOEA/D
[9], and compare the derived algorithm, denoted as MOEA/D-par (see Algorithm
2), with MOEA/D using the Chebyshev scalarising functions.

4.1 Experimental descriptions

Test problems Test problems used in this study are constructed by applying
different shape functions provided in the WFG toolkit to the standard WFG4
benchmark problem, please refer to [19] for more details. The WFG41 has a
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Algorithm 2: MOEA/D using Pareto adaptive scalarising functions

Input: initial population, S ← {x1,x2, · · · ,xN}, initial weights,
W ← {w1,w2, · · · ,wN}, selection neighbourhood size, T , replacement
neighbourhood size, nr

Output: S

1 Initialise the L
p

k as the weighted sum style, i.e., pk ← 1, i ∈ {1, 2, · · · , N};
2 Evaluate the objective function values of the initial S;

3 Update the ideal and nadir vectors, z∗ and znad;

4 Randomly assign each weight, wi with a candidate solution, xi;

5 Calculate the Euclidean distance between weights, wi and wj , i, j ∈ 1, 2, · · · , N ;

6 Find the T neighbouring weights B(wi) of wi based on the distance of weights

and identify the related neighbouring solutions Q of xi;
7 Set iteration← 0, set matingS ← ∅;
8 while the stopping criterion is not satisfied do

9 for i← 1 to N do

10 if rand < δ then

11 matingS ← Q;
12 else

13 matingS ← S;
14 end

15 Randomly select three solutions xr1,xr2 and xr3 from the mating pool,
matingS;

16 Generate a new solution xnew by performing differential evolution (DE)
and polynomial mutation (PM) operators;

17 Evaluate the objective value of xnew, and update the ideal and nadir
vectors;

18 for each xk ∈ Q do

19 Compare gwd(xnew|wk, pk) with gwd(xk|wk, pk);
20 end

21 Replace no more than nr solutions in Q with xnew if gwd(xnew|wk, pk)
is smaller;

22 end

23 Update the pk value for each search direction using Algorithm 1;

24 end
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concave Pareto optimal front. WFG42 has a convex Pareto optimal front. The
Pareto optimal front of WFG43 is a hyperplane. The number decision variables
of these problems is set to n = 100 wherein the WFG position parameter (k)
and the distance parameter (l) are m−1

2
and 100 − k, respectively. The Pareto

optimal front of these problems has the same trade-off magnitudes, and it is
within [0, 2]. These problems are invoked in 2-, 4- and 7-objective instances. Note
that unless otherwise stated we use WFGn-Y to denote the problemWFGn with
Y objectives.

General parameters The following parameters are set constant across all
algorithm runs:

– Algorithm runs and stopping criterion: each algorithm is performed for 31
runs, each run for 25,000 function evaluations.

– Population size: N = 200 for bi-objective problems, 400 for 4-objective prob-
lems, and 700 for 7-objective problems.

– DE and PM operators : the DE control parameters are set as F = 0.5 and
CR = 0.9. The mutation probability pm = 1/n and its distribution index is
set to be ηm = 20.

– The initial candidate p values : p ∈ P = { 1

2
, 2

3
, 1, 2, 3, 4, 5, 10, 1000}.

– MOEA/D parameters : the selection neighbourhood size is set to 10% of N ,
the replacement size (nr) is 10% of T .

4.2 Experimental results

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1

f2

MOEA/D
MOEA/D−par
PF

1.251.31.351.4
1.45

1.5

1.55

1.6

(a) WFG41-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1

f2

MOEA/D
MOEA/D−par
PF

0.550.60.650.7

0.5

0.55

0.6

0.65

(b) WFG42-2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1

f2

MOEA/D
MOEA/D−par
PF

0.850.90.95 1 1.05

1

1.05

1.1

1.15

(c) WFG43-2

Fig. 7. (Color online) Attainment surfaces for the 2-objective WFG4X problems.

Median attainment surfaces Plots of median attainment surfaces across the
31 runs of each algorithm are shown in Fig. 7. These allow visual inspection of
performance in terms of the dual aims of proximity to and diversity across the
global trade-off surface. The PF of each problem serves as a reference. From
inspection of Fig. 7, the two algorithms appear to have comparable diversity
performance while the MOEA/D-par has a clear better convergence performance
than MOEA/D for all the three problems.



MOEA/D using Pareto adaptive scalarising functions 11

Table 1. Comparison results of the HV and C metric values for the WFG4X problems.
The symbol ‘<’, ‘=’ or ‘>’ means MOEA/D is statistically worse, comparable or better
than MOEA/D-par. A refers to MOEA/D, B refers to MOEA/D-par.

HV (A) HV (B) C(A,B) C(B,A)

WFG41-2 0.2982(0.0052) < 0.3138(0.0031) 0.0052(0.0104) < 0.9640(0.0426)

WFG42-2 0.7710(0.0047) < 0.7887(0.0038) 0.0984(0.0668) < 0.7846(0.0464)

WFG43-2 0.5286(0.0071) < 0.5460(0.0021) 0.0438(0.0876) < 0.7548(0.0404)

WFG41-4 0.4668(0.0097) < 0.5861(0.0028) 0.0020(0.0041) < 0.3495(0.0427)

WFG42-4 0.8828(0.0072) < 0.9100(0.0079) 0(0) < 0.1355(0.0642)

WFG43-4 0.7318(0.0218) < 0.8147(0.0194) 0.0044(0.0051) < 0.1118(0.0638)

WFG41-7 0.5319(0.0212) < 0.7204(0.0340) 0(0) < 0.0633(0.0368)

WFG42-7 0.9500(0.0069) < 0.9556(0.0011) 0.0263(0.0137) < 0.0551(0.0178)

WFG43-7 0.8112(0.0165) < 0.8884(0.0084) 0(0) < 0.0797(0.0239)

Comparison results in terms of the HV and C metrics Comparison
results of MOEA/D-par with MOEA/D in terms of the HV and C metrics are
presented in Table 1. A favourableHV value (larger, for a minimisation problem)
implies good proximity with diversity. In our experimental studies, the reference
point is set to 1.1×znad, i.e., (2.2, 2.2, · · · , 2.2). The C metric is a binary metric
which provides information on convergence. For example, given two sets, A and
B, C(A,B) refers to the fraction of solutions in B that are dominated at least
by one solution in A. C(A,B) > C(B,A) indicates a better convergence of the
A set. Moreover, the non-Parametric Wilcoxon-ranksum two-sided comparison
procedure at the 95% confidence level is employed to compare the significance
of difference between two algorithms.

From Table 1, we can clearly observe that MOEA/D-par performs better
than MOEA/D for all problems in terms both the HV and C metrics. As the
only difference between MOEA/D-par and MOEA/D lies in the use of Pareto
adaptive scalarising functions, such results are able to confirm that provided
a good estimation of the Pareto front geometry, the use of Pareto adaptive
scalarising function is helpful, which can improve the performance of MOEA/D
significantly for both bi- and many-objective problems (up to 7 objectives).

4.3 Experimental discussions

This section investigates two issues, as part of a wider discussion for the use of
Pareto adaptive scalarising functions. First, we examine the obtained p values
in MOEA/D-par; Second, the range of the candidate p values.

Observation of the obtained p values Empirical comparison results have
demonstrated the benefits of using Pareto adaptive scalarising functions in MOEA/D.
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Fig. 8. (a)The obtained p values for WFG41-4 over generations; (b) The change of
search ability of different Lp scalarising function in 2-, 4- and 10-objective problems.

Here, we show the obtained p values for the search direction w = (0.5, 0.5)
over generations, as an evidence of the superior performance of MOEA/D-
par over MOEA/D. Due to the limited space, Fig. 8(a) only illustrates the
obtained p values for WFG41-4. The Pareto optimal front of WFG41-4 is a
hyper-sphere. This indicates that the threshold p value is 2, and thus, the ob-
tained p value should be 3 provided on the considered candidate p values, i.e.,
p ∈ P = { 1

2
, 2

3
, 1, 2, 3, 4, 5, 10, 1000}. As is expected, it is observed from Fig.

8(a) that the p values gradually converge to 3. As previously analysed, the Lp=3

scalarising function is able to find all Pareto optimal solutions for a sphere type
Pareto front, i.e., WFG41, and simultaneously, Lp=3 has a better search ability
than the Chebyshev scalarising function.

Analysis of the range of the initial candidate p values In principle p can
be any value within the interval (0,∞]. However, regarding the computational
efficiency, we expect to shrink the range of p as much as possible. Of course,
such a shrink should not lead to a severe deterioration of the algorithm perfor-
mance. In this section, we conduct a simple experimental analysis on the effect
of different p values so as to set an upper bound of the candidate p value.

Let us consider a set of 1000×m points that are uniformly sampled from the
hypercube (0, 2]m, where m is the dimension of objective space. Also, consider
the contour lines of the Lp scalarising functions along the direction of w =
{1/m, · · · , 1/m}. Such contour lines intersect the point x = (1, · · · , 1). Then we
count the number of points that satisfy the condition

∑m

i=1
(xi)

p < m, indicating
that x is better than solutions on the contour line of the gwd(x|w, p) = m. The
experiments are repeated for 100 times. The mean proportion of better points
over p values varying from 1 to 10 are plotted in Fig. 8(b) for m = 2, 4 and 10-
dimension spaces, respectively. From the figure, we find that the search ability of
the Lp scalarising function decreases dramatically from p = 1 to p = 5 whereas
slightly when p > 5. Moreover, the larger the problem dimension, the faster
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the decrease of the Lp search ability. The search ability of Lp=10 appears no
significant advantage over the weighted Chebyshev function, in particular, in
the 10-dimension space. Therefore, we tentatively recommend that despite the
Chebyshev function, p = 10 might be considered as an upper bound for the
candidate p values.

5 Conclusion

Decomposition based algorithms comprise a popular class of multi-objective evo-
lutionary algorithms, and have been demonstrated to perform well when a suit-
able set of weighted scalarising functions are provided. The effect of weights,
including methods for determining suitable weights, have been intensively stud-
ied. However, the effect of scalarising functions is far from being well understood.
In this paper we study the properties of the family of Lp scalarising functions,
and identify that the p value corresponds to a trade-off between the scalarising
function’s search ability and its robustness on Pareto front geometry. Moreover,
we propose to use different Pareto adaptive scalarising functions along differen-
t search directions. A naive method is employed to perform an on line Pareto
front geometry estimation, and thus, identifying a suitable Lp function. Experi-
mental results show that MOEA/D using Pareto adaptive scalarising functions
outperforms the standard MOEA/D for problems having different Pareto front
geometries.

It should be pointed out that there are a number of ways in which the central
contributions of this study are limited. First, we are aware of some other meth-
ods handling the choice of scalarising functions, for example, an adaptive use (a
simultaneous use) of the Chebyshev and weighted sum approaches by Ichibuchi
et al. [29, 30]. In future, a comprehensive analysis regarding the advantages and
disadvantages of these methods will be conducted. Second, though the employed
Pareto front geometry estimation strategy appears to work well on the consid-
ered test problems, it is rather limited, more effective methods are required. As a
start, it is non-trivial to investigate how a suitable set of neigobouring solutions
should be chosen as this plays an important role for discontinuous Pareto front
geometry estimation. Third, adaptation of scalarising functions accounts effec-
tively varying the subproblems. As discussed in [34], the adaptation can lead
to reduced convergence rates, and thus, the effect of adaptation of scalarising
functions should be investigated further. Lastly, findings of this study are based
on three basic continuous MOPs. It is also important to assess the performance
of MOEA/D-par on problems having other complex geometries, other problem
types, e.g. multi-objective combinatorial problems, and also, crucially, real-world
problems.
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