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Preference-Inspired Coevolutionary Algorithms for
Many-Objective Optimization

Rui Wang, Robin C. Purshouse, and Peter J. Fleming

Abstract—The simultaneous optimization of many objectives
(in excess of 3), in order to obtain a full and satisfactory set
of tradeoff solutions to support a posteriori decision making,
remains a challenging problem. The concept of coevolving a
family of decision-maker preferences together with a population
of candidate solutions is studied here and demonstrated to
have promising performance characteristics for such problems.
After introducing the concept of the preference-inspired co-
evolutionary algorithm (PICEA), a realization of this concept,
PICEA-g, is systematically compared with four of the best-in-
class evolutionary algorithms (EAs); random search is also stud-
ied as a baseline approach. The four EAs used in the comparison
are a Pareto-dominance relation-based algorithm (NSGA-II), an
ε-dominance relation-based algorithm [ε-multiobjective evo-
lutionary algorithm (MOEA)], a scalarizing function-based
algorithm (MOEA/D), and an indicator-based algorithm
[hypervolume-based algorithm (HypE)]. It is demonstrated that,
for bi-objective problems, all of the multi-objective evolutionary
algorithms perform competitively. As the number of objectives
increases, PICEA-g and HypE, which have comparable perfor-
mance, tend to outperform NSGA-II, ε-MOEA, and MOEA/D.
All the algorithms outperformed random search.

Index Terms—Coevolution, evolutionary algorithms, many-
objective optimization.

I. Introduction

IT IS an accepted fact that multiobjective evolutionary
algorithms (MOEAs) can be successfully applied to mul-

tiobjective optimization problems (MOPs) possessing two or
three objectives [1], [2]. However, more recent studies have
suggested that the search ability of some MOEAs, e.g., NSGA-
II [3] and SPEA2 [4], is often severely degraded by an increase
in the number of objectives [5], [6]. Particularly, the “sweet-
spot” [7] of algorithm parameter settings that yield good
performance may greatly contract [5], [6], i.e., algorithms
become more sensitive to the user’s choice of parameter
settings.
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MOPs with more than three objectives are significantly
more challenging; these have been termed many-objective
optimization problems [6], [8]. The poor performance of
Pareto-dominance-based MOEAs is due to the fact that the
proportion of nondominated objective vectors in each MOEA
population becomes very large as the number of objectives
increases. As a result, not enough selective pressure can be
generated toward the Pareto front [6], [8]–[10].

Various approaches have been proposed to improve the
search ability of standard Pareto-dominance-based MOEAs
for many-objective problems [10], [11]. In [11], five different
scalability improvement approaches are considered: 1) modi-
fication of the density estimator [12], [13]; 2) introduction of
different ranks [13]–[15]; 3) modification of Pareto-dominance
[16], [17]; 4) modification of objective functions [17], [18];
and 5) hybridization with local search [19]. Ishibuchi et al. ex-
amined the effects of these approaches on the performance of
NSGA-II, demonstrating empirically that most of these ap-
proaches can improve the convergence property but simultane-
ously decrease the diversity of obtained solutions [11]. Aside
from these approaches, a relaxed form of Pareto dominance
known as ε-dominance was proposed by Laumanns et al. as
a means of maintaining both the convergence and diversity of
solutions [20]. Wagner et al. demonstrated that ε-dominance-
based MOEAs are promising approaches for many-objective
problems [12].

A theoretically well-supported alternative to Pareto dom-
inance is the use of an indicator function to measure the
quality of solution sets. This kind of MOEA is referred to
as an indicator-based evolutionary algorithm (IBEA) [21].
The hypervolume indicator [22], which is the only unary
quality measure that is strictly monotonic with regard to Pareto
dominance, is often used as an indicator [23], [24]. However,
the high computational effort required for hypervolume cal-
culation [25] greatly inhibits its application. Recently, Bader
and Zitzler proposed a new hypervolume-based algorithm
(HypE), in which a Monte Carlo simulation method is used
to approximate the exact hypervolume value [26], [27]. This
approximation method significantly reduces computation load
and makes HypE very competitive for solving many-objective
optimization problems.

The scalarizing function-based fitness evaluation approach
(i.e., weighted sum or weighted Tchebycheff) is another
promising alternative to the Pareto-dominance relation. The
most well-known representative MOEA based on this concept
is scalarizing function-based algorithm (MOEA/D) [28]. It
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has been demonstrated in the literature [9], [28]–[30] that
MOEA/D has high search ability for continuous optimization,
combinatorial optimization, and also performs well on prob-
lems with complex Pareto sets. MOEA/D, the winner of the
Unconstrained Multiobjective Evolutionary Algorithm Com-
petition at the 2009 Congress on Evolutionary Computation
[29], is an important approach to consider for solving many-
objective optimization problems.

Since preference-based approaches are useful for the gener-
ation of tradeoff surfaces in objective subspaces of interest to
the decision maker [31], [32], intuitively, coevolving a family
of preferences simultaneously with the population of candidate
solutions has the potential to be another promising concept for
solving many-objective problems. We refer to realizations of
this concept as preference-inspired coevolutionary algorithms
(PICEAs), since the preferences are being used to generate
approximation sets for a posteriori decision making, rather
than representing true articulations of decision-maker prefer-
ences for a priori or progressive optimization. Recent research
by Purshouse et al. [33] demonstrated that an approach of
this type is able to outperform NSGA-II, the average ranking
method [14], and random search on many-objective problems.
In this paper, we further explore the potential of the PICEA
concept by comparing a variant of the Purshouse et al. [33]
algorithm with representative algorithms from other classes of
MOEA: the ε-dominance-based algorithm, ε-MOEA [34], an
indicator-based algorithm, HypE [27], a MOEA/D [28], and
the Pareto-dominance-based algorithm, NSGA-II [3], along
with random search that is included as a baseline.

The remainder of this paper is structured as follows. Sec-
tion II first introduces the concept of a PICEA and provides
one realization based on a particular definition of preference.
This is followed, in Section III, by brief descriptions of the
representative search methods used for comparison purposes.
Section IV introduces the proposed test functions, performance
measures, and general parameter settings to be used in the ex-
periments undertaken for the comparison study. Experimental
results are presented in Section V. Section VI offers a further
discussion of the algorithms. Findings, limitations of the study,
and proposals for future research are presented in Section VII.
Finally, conclusions are drawn in Section VIII.

II. Preference-Inspired Coevolutionary

Algorithms

A. Motivation

One of the major challenges identified for many-objective
optimization is the reduced ability of the Pareto-dominance
relation in offering comparability between alternative solutions
[2]. This lack of comparability means that algorithms using
Pareto-dominance struggle to drive the search toward the
Pareto front [6]. However, it has long been known that by
using decision-maker preferences, we can potentially gain
comparability between otherwise incomparable solutions [35].
A classic example can be found in the early seminal work
of Fonseca and Fleming [31], in which the effect of different
specifications of decision-maker goals and priorities on the
partial ordering of solutions in an enumerated search space

is shown with striking clarity. If we specify a single set of
preferences, then we focus the search on a subset of the
Pareto front (possibly a single solution, depending on how the
preferences are specified), with different sets of preferences
leading to different subsets of the front.

However, our interest here remains in a posteriori opti-
mization, i.e., providing decision makers with both a proximal
and a diverse representation of the entire Pareto front [36],
prior to the elicitation and application of their preferences. In
this sense, we are interested in holding multiple sets of hypo-
thetical preferences simultaneously, to provide multiple com-
parison perspectives simultaneously, which are sufficient to
adequately describe the whole front. The simultaneity is what
differentiates this approach from the multiple restart strategies
of conventional multicriteria decision-making methods
[35].

The notion of using preferences in this way (i.e., not as
real decision-maker preferences but as a means of comparing
solutions for the purposes of a posteriori optimization) is
not new to evolutionary multi-criteria optimization (EMO)
research, but is certainly underexplored. Existing approaches
have tended to focus on an aggregation-based formulation
of preferences; Jin et al. considered preferences in the
form of a weighted sum, in which the weightings were
varied over the course of the search [37]. Hughes proposed
a ranking method based on how each solution performed
against a set of predefined preferences expressed as weighted
min–max formulations [38]. Zhang et al. developed a
cellular algorithm in which each node represents a particular
preference formulation, leading to a spatial distribution of
preferences [28]. The challenge for these methods is how to
define a suitable family of preferences that will produce a
full representation of the Pareto front. This issue is slightly
different from that faced by multiple restart algorithms, since
the focus is on maintaining the usefulness of the preference
family during the course of a population-based search. Few
approaches of this type are known. Hughes extended his
earlier work to consider online generation of target vectors
by bootstrapping these from the online archive of locally
nondominated solutions, with mixed results [39].

A potential way of maintaining the relevance of the prefer-
ence family as the search progresses is to coevolve the family
together with the usual population of candidate solutions. The
solutions would gain fitness by performing well against the
preferences (as in the approaches above), and the preferences
would gain fitness by offering comparability between solu-
tions. In our paper, we call this type of approach a PICEA.
Harnessing the benefits of coevolution for optimization pur-
poses is known to be challenging [40], although there are
multiobjective examples [41], and we are aware of only one
existing work that has attempted to implement a concept
similar to PICEA. Lohn et al. [42] considered coevolving a
family of target vectors as a means of improving diversity
across the Pareto front. The paper was published shortly before
the advent of many-objective optimization in EMO and the
authors did not consider the benefits of the target vectors for
improving solution comparability per se. However, the paper
can certainly be interpreted in such terms. The Lohn et al.
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Fig. 1. (μ+λ) elitist framework.

method of fitness assignment is very interesting and we retain
this in our paper on first realization of a PICEA-g.

PICEA-g considers a family of goals, a more natural
terminology than target vectors when thinking about decision-
maker preferences, but the two are essentially equivalent. It
is important to recognize that this is just one realization of
how preferences could be used in a PICEA, and we expect
further realizations to follow once the benefits of the con-
cept for many-objective optimization have been convincingly
demonstrated.

B. Realization of a PICEA

In the fitness assignment method of Lohn et al. [42],
candidate solutions gain fitness by meeting a particular set of
target vectors in objective space, but the fitness contribution
must be shared between other solutions that also satisfy those
targets. Targets only gain fitness by being satisfied by a
candidate solution, but the fitness is reduced the more times
the targets are met by other solutions in the population. The
overall aim is for the targets to adaptively guide the solution
population toward the Pareto front. That is, the candidate
solution population and the target population coevolve toward
the Pareto front.

We develop the fitness assignment method of Lohn et al.
into a reproducible MOEA framework as shown in Fig. 1.
Fig. 1 shows a flow chart of PICEA-g within a (μ+λ)
elitist framework. A population of candidate solutions and
preference sets, S and G, of fixed size, N and NGoal, are
evolved for a fixed number of generations maxGen. In each
generation t, parents S(t) are subjected to (representation-
appropriate) genetic variation operators to produce N offspring
Sc(t). Simultaneously, NGoal new preference sets Gc(t), are
randomly regenerated based on the initial bounds. S(t) and
Sc(t), and G(t) and Gc(t), are then pooled, respectively, and
the combined populations are sorted according to the fitness.
Truncation selection is applied to select the best N solutions
as new parent population S(t+1), and NGoal solutions as new
preference population G(t + 1).

Fig. 2. Simple bi-objective minimization example.

The method to calculate the fitness Fs, of a candidate
solution s and fitness Fg, of a preference g, is defined by
(1)–(3) as follows:

Fs = 0 +
∑

g∈G�GC |s�g

1

ng

(1)

where ng is the number of solutions that satisfy preference
g (note that if s does not satisfy any g, then the FS of s is
defined as 0) and

Fg =
1

1 + α
(2)

where

α =

{
1, ng = 0
ng−1
2N−1 , otherwise

(3)

and where N is the candidate solution population size.
In order to further explain the fitness assignment scheme,

consider the bi-objective minimization instance shown in
Fig. 2 with two candidate solutions s1 and s3, their offspring
s2 and s4, two existing preferences g1 and g3, and two new
preferences g2 and g4 (i.e., N = NGoal = 2).

In Fig. 2, g1 and g2 are each satisfied by s1, s2, s3, and s4

and so ng1 = ng2 = 4. g3 and g4 are satisfied by s3 and s4 only
and, therefore, ng3 = ng4 = 2. In terms of fitness of solutions,
from (1)

Fs1 = Fs2 =
1

ng1

+
1

ng2

=
1

4
+

1

4
=

1

2

and

Fs3 = Fs4 =
1

ng1

+
1

ng2

+
1

ng3

+
1

ng4

=
1

4
+

1

4
+

1

2
+

1

2
=

3

2
.

Considering the preference fitnesses, using (2), α for g1 and
g2 is

ng1 − 1

2N − 1
=

4 − 1

4 − 1
= 1

and so, using (3), Fg1 = Fg2 = 1
2 . Similarly, α for g3 and g4 is

2−1
4−1 = 1

3 and, therefore, Fg3 = Fg4 = 3
4 .

Based on the fitness, s3 and s4 are considered the best solu-
tions, which will be selected for the next generation. However,
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Fig. 3. Changes in comparability with objective scaling: Pareto-dominance
and goal approaches.

obviously s3 is dominated by s4. Compared with s3, although
s2 has a lower fitness, it is nondominated with s4. Therefore, s2

and s4 are desired to be kept in the population set. In order to
do that, the classic Pareto-dominance relation is incorporated.
After calculating fitness values using (1)–(3), we next identify
all the nondominated solutions in S � Sc. If the number of
nondominated solutions does not exceed the population size,
then we assign the maximum fitness to all the nondominated
solutions. However, if more than N nondominated solutions
are found, we then disregard the dominated solutions prior to
applying truncation selection (implicitly, their fitness is set to
zero). Based on fitness, the best N nondominated solutions are
selected to constitute the new parent S(t + 1). In the example
in Fig. 2, Fs1 = 0, Fs2 = 1

2 , Fs3 = 0, and Fs4 = 3
2 .

While the use of goals does rely on Pareto-dominance
comparison at the level of the individual goal, the presence
of multiple goals can significantly mitigate the comparability
issues observed when scaling the standard dominance relation.
To see this, consider a population of 100 objective vectors
randomly generated in the hypercube (0, 1]M , where M is
the dimension of objective space, and we have defined a
direction of preference in each objective. We sort the 100
individuals into equivalence classes using a global Pareto-
dominance relation (nondominated sorting) and also using the
Lohn et al. fitness assignment scheme for three populations
of randomly generated goal vectors (of size 20, 100, and
500). We repeat our experiments 500 times and calculate the
mean number of equivalence classes for each of the four
approaches. The results are shown in Fig. 3. It is evident that
by using goals, a substantially greater level of comparability
can be achieved than by using global Pareto dominance. The
more goals that are used, the greater the comparability that
is achieved. While the number of equivalence classes does
reduce in the goal scheme as the number of objectives is
increased, a 100-goal approach (i.e., matched to the number of
objective vectors) is still able to provide greater comparability
in ten objectives than the global Pareto approach in three
objectives. This provides some reassurance that the method
has potential for many-objective optimization, since Pareto-
dominance-based algorithms tend to still work well for three-
objective problems.

Algorithm 1 PICEA using goals (PICEA-g)

[S,G]= initialize(N, NGoal)
F S = objective function(S)
While Not termination(S)

Sc = genetic−variation(S)
F−Sc = objective−function(Sc)
JointS = multiset−union(S,Sc)
JointF = multiset−union(F−S,F−Sc)
Gc = goal−generator(NGoal)
JointG = multiset−union(G, Gc)
[FitJointS, FitJointG] =
fitness−assignment
(JointS, JointG)
index−nd−JointS =
Pareto−dominance
(JointF)
If size (index−nd−JointS) < N

FitJointS(index−nd−JointS) =
max−fitness(FitJointS)
S = truncation−selection
(JointS, FitJointS)

Else
S = truncation−selection
(JointS(index−nd−JointS),
FitJointS(index−nd−JointS))

End if
G = truncation−selection

(JointG, FitJointG)
End While

The pseudocode of PICEA-g is presented in Algorithm 1.
The function “termination” is currently implemented as a
simple maximum generation number. The goal generator cur-
rently generates random goal vectors (variation operators have
not been implemented for the goals). More specifically, goal
vectors are randomly generated as objective vectors directly in
objective space, within bounds defined by the vectors of ideal
and anti-ideal performance.

For the comparative study, the number of preferences
NGoal, used to evaluate candidate solutions, is set to M×100,
where M is the number of objectives, i.e., 200, 400, 700, and
1000 for tests to be conducted with 2, 4, 7, and 10 objectives,
respectively. Such settings may not be the best choices, and
the influence of NGoal on algorithm performance is discussed
in Section V-A.

III. Overview of Comparison MOEAs

The performance of PICEA-g is compared with four of
the best-in-class evolutionary algorithms (EAs): the ε-MOEA,
HypE, MOEA/D, and the renowned Pareto-dominance based
algorithm, NSGA-II. A fifth method, random search, is also
included in the comparison as a useful baseline comparator.
Each of these five algorithms is briefly summarized below,
together with some details of the specific implementations
adopted for the comparison.
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Fig. 4. Illustration of ε-dominance concept (minimizing f1 and f2).

A. ε-MOEA

Laumanns et al. [20] proposed the ε-MOEA algorithm, in
which the ε-dominance concept is applied. Both the conver-
gence and the diversity property of this algorithm can be
maintained by the setting of an appropriate value for ε. The
objective space is divided into a grid of hyperboxes, whose
size can be adjusted by the choice of ε. For each hyperbox
that contains a solution (or solutions), the dominance of the
hyperbox is checked. An archive strategy, suggested in [34],
is applied in ε-MOEA and used to retain one solution for each
nondominated hyperbox. The specific dominance checking
process is explained as follows (see Fig. 4). First, if the
hyperbox of a new solution (C) dominates another hyperbox
(D) in the archive, the dominated archive members (D) are
rejected. Second, if there is more than one solution in the
same hyperbox (A, B), the dominated solutions are removed
(B). Third, if there is more than one nondominated solution
in a hyperbox (E, F ), one of them is randomly selected. For
the third step, Deb et al. [34], [43] suggested choosing the
solution (E) that is the closest to the origin of the hyperbox.

In this paper, Deb’s ε-MOEA is used and, for each test
instance, different ε1 values are used in order to obtain roughly
100 solutions after an allowed number of function evaluations
(25 000 in this paper) [34]. The value of ε varies with each
objective, reflecting the scaling of the selected benchmark
functions. We understand that the ε value may impact the
performance of ε-MOEA and this is discussed in Section V-B.

B. Indicator-Based EA: HypE

Zitzler and Künzli proposed a general IBEA in [21]. Hy-
pervolume, which has good properties with respect to set-

1M = 2: WFG2: ε = (0.004, 0.008), WFG3: ε = (0.0133, 0.0266), WFG4–9:
ε = (0.02,0.04).

M = 4: WFG2: ε = (0.0500 0.1000 0.1500 0.2000), WFG3: ε = (0.1000
0.2000 0.3000 0.4000), WFG4–9: ε = ( 0.2857 0.5714 0.8571 1.1429).

M = 7: WFG2: ε= ( 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500)
WFG3: ε= (0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000) WFG4–9: ε

= 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000).
M = 10: WFG2: ε=( 0.0571 0.1143 0.1714 0.2286 0.2857 0.3429 0.4000

0.4571 0.5143 0.5714) WFG3: ε=( 0.1333 0.2667 0.4000 0.5333 0.6667
0.8000 0.9333 1.0667 1.2000 1.3333) WFG4–9: ε= ( 0.5000 1.0000 1.5000
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000).

Fig. 5. Illustration of the basic fitness assignment scheme where the fitness
Fa of a solution a is set to Fa = Hyp(a).

based dominance comparisons [44], is always taken as an
indicator in IBEA. However, the high computational effort
required for its calculation inhibits the full exploitation of its
potential [23]–[25]. HypE [27] uses a hypervolume estima-
tion algorithm for multiobjective optimization (Monte Carlo
simulation to approximate the exact hypervolume values), by
which the accuracy of the estimates can be traded off against
the available computing resources. There is evidence that the
approach can be effective for many-objective problems [27].
In the same way as a standard MOEA, it is based on fitness
assignment schemes, and consists of successive application of
mating selection, variation, and environmental selection. The
hypervolume indicator is applied in environmental selection.

In HypE, the hypervolume-based fitness of a solution is not
only calculated based on its own hypervolume contribution but
also the hypervolume contribution associated with other solu-
tions. This is illustrated in Fig. 5, where the portion of hyper-
volume that is weakly dominated by a is fully attributed to a,
the portion of hypervolume that is dominated by a and another
solution c is attributed half to a. Note that this is a more refined
approach than that adopted in the other hypervolume-based
approaches, such as the S metric selection-based evolutionary
multi-objective optimization algorithm (SMS-EMOA) [24], in
which contribution calculations are limited to single solutions,
without consideration of the wider population context.

In this comparison study, we strictly follow the hypervolume
contribution calculation method described in [27]. On two-
objective problems, the exact hypervolume contribution of
each solution is calculated. On four-, seven-, and ten-objective
test instances, a Monte Carlo simulation method with 2000,
3500, and 5000 sampling points, respectively, is used to cal-
culate the estimated hypervolume contribution. We understand
that the number of sampling points Nsp, may impact the
quality of the Pareto set approximation. A further discussion
on the setting of the number of sampling points is provided
in Section V-A.

C. Scalarizing Function-Based Algorithm: MOEA/D

MOEA/D, first proposed by Zhang and Li [28], is a simple
yet powerful MOEA. It has a number of advantages over
Pareto-dominance-based algorithms, such as its scalability to
many-objective problems, high search ability for combinatorial
optimization, computational efficiency of fitness evaluation,
and high compatibility with local search [9], [28]–[30]. The
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TABLE I

Parameters for MOEA/D

Objective Population Size (No. of Weight Vectors) H

2 100 99
4 455 12
7 924 6
10 2002 5

main characteristic feature of MOEA/D is the handling of
a multiobjective problem as a collection of single-objective
problems (SOPs), which are defined by a scalarizing function
(e.g., weighted sum or weighted Tchebycheff) with different
weight vectors. Each scalarizing fitness function (defined by
a specific weight vector) identifies a single solution that is
the best with respect to that scalarizing fitness function. For
each SOP, a new solution is generated by performing genetic
operators on several solutions from among its neighbors.
Neighbors are defined based on the distance between the
weight vectors. A SOP i is a neighbor of SOP j if the weight
vector of SOP i is close to that of SOP j. The newly generated
solution is compared with all its neighbors. If the new solution
is better, then some (or all) of its corresponding neighbors are
replaced by the new solution. At the same time, the diversity of
solutions is maintained by a number of uniformly distributed
weight vectors in MOEA/D.

The weight vectors are generated according to

w1 + w2 + · · · + wM = 1 (4)

wi ∈
{

0,
1

H
,

2

H
, · · · H

H

}
, i = 1, 2, · · · , M (5)

where H is a user-definable positive integer and M is the num-
ber of objectives. The number of weight vectors is calculated
as Nwv = CM−1

H+M−1 [28], where C stands for the combination
formula. For example, for two-objective problems, if H is
specified as 100, then we can generate C1

101 = 101 groups
of weight vectors (0, 1), (0.01, 0.99), . . ., (1, 0). Since each
individual has a different weight vector, the population size
is the same as the number of weight vectors. In the first
MOEA/D version [28], the new solution will replace all the
neighbors that are worse than itself. However, in order to
maintain a better diversity, in [29] and [30], an upper bound is
defined to limit the maximum number of replacements. In our
experiments, the weighted Tchebycheff scalarizing function is
used. The associated point z∗

i is specified as follows [28]:

z∗
i = 0.9 × min {fi(x)|x ∈ �} , i = 1, 2, . . . , M (6)

where � is the decision space. The reference point z∗
i is

updated whenever a new best value in objective i is identified.
Population size and other required parameters in MOEA/D are
set as shown in Table I.

Disregarding the stopping criterion (i.e., a fixed number
of function evaluations), it is obvious that the more weight
vectors used in MOEA/D, the better the performance that
the algorithm can achieve. However, given a fixed number
of function evaluations, it is not straightforward to decide

how many groups of weight vectors are appropriate for each
problem. In this comparison study, 100 and 455 groups of
weight vectors are chosen for two and four-objective walk-
ing fish group (WFG) tests, as they are commonly used
in MOEA/D studies [9], [30]. However, on seven- and ten-
objective WFG tests, no related suggestions are given in the
literature. The conventional method for deriving the H param-
eter for two- and four-objective problems is not appropriate
for seven- and ten-objective cases due to the extremely large
population size that results. For example, choosing H = 12
for seven-objective problems makes the population size as
large as C6

18 = 18564. Therefore, we performed a limited
search through the parameter space of the H parameter to
find more appropriate configurations of the MOEA/D weight
vectors. Our choice of H then leads to the population sizes
of 924 and 2002. No specific information is provided in the
literature concerning the selection of neighborhood size T and
replacement neighborhood size nr except that, in [30], the
authors point out that T should be much smaller than the
population size and nr should be much smaller than T . For this
paper, therefore, for each problem T = 10 and nr = 2. These
settings may not be the best and an analysis on the setting of
weight vectors T and nr is provided in Section V-C.

D. Pareto-Dominance-Based EA: NSGA-II

A wide variety of algorithms have been proposed, based on
Pareto-dominance comparisons supplemented with diversity
enhancement mechanisms. The most popular of these methods,
the seminal NSGA-II algorithm [3], is selected in the study as
representative of this class. NSGA-II is known to perform well
on bi-objective problems but may experience difficulties in
many-objective spaces [5], [6], [8]. It is an elitist approach; the
parent and offspring population are combined and evaluated
using a fast nondominated sorting approach and an efficient
crowding scheme. When more than N population members of
the combined population belong to the nondominated set, only
those that are maximally apart from their neighbors, according
to the crowding measure, are chosen.

E. Random Search: rand

Evidence exists that random search can be competitive to
evolutionary approaches in many-objective spaces [6], [14],
making this a natural benchmark, at present, for comparison
against any proposed new algorithm. This paper implements a
very crude random scheme in which N × maxGen candidate
solutions are randomly generated and the dominated solutions
are removed.

IV. Test Problems, Performance Assessment, and

Parameter Settings

To benchmark the performance of the considered MOEAs,
problems 2–9 from the WFG test suite [45] are invoked
in two-, four-, seven-, and ten-objective instances. In each
case, the WFG parameters k and l are set to 18 and 14,
respectively, providing a constant number of decision variables
for each problem instance. Problem attributes covered include
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Fig. 6. Attainment surfaces for two-objective WFG test instances (WFG2-2 to WFG9-2). Color reproduction available at http://www.sheffield.ac.uk/
acse/research/ecrg/picea.

separability or nonseparability, unimodality or multimodality,
unbiased or biased parameters, and convex or concave geome-
tries. Please note that in this paper, WFGX-Y refers to problem
WFGX with Y objectives.

For performance assessment, first, median attainment sur-
faces [46] are plotted to visualize the performance of algo-
rithms on two-objective instances. Second, comparisons are
made in terms of whether one approximation set dominates
another, since the only preference information this metric
relies on is a direction of preference in each objective. Where
such limited preference information is unable to distinguish
between algorithms, approximation set comparisons are made
using the hypervolume metric [22], which assumes equal

relative importance of normalized objectives across the search
domain. The hypervolume is calculated using the method and
software developed by Fonseca et al. [47].

Besides some unique parameters of each algorithm (as
described in Section II), the general parameters are shown
in Table II. In the earlier comparative study of a PICEA
[33], only mutation operators were applied in each algorithm.
However, in this paper, simulated binary crossover (SBX) and
polynomial mutation (PM) as described by Deb [2], [3] are
applied. The recombination probability pc is set to 1 per
individual and mutation probability pm is set to 1

nvar
per

decision variable. The distribution indices ηc = 15 and ηm = 20
are used. If not otherwise stated, a population size N = 100
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Fig. 7. Box plots of hypervolume results for two-objective instances.

TABLE II

Algorithm Testing Parameter Settings

General Parameters
Objectives (M) 2, 4, 7, 10
Position parameter (k) 18
Distance parameter (l) 14
Decision variables (nvar) nvar = k + l = 32
Population size (N) 100
Max generations (maxGen) 250
Crossover operator SBX (pc = 1, ηc = 15)

Mutation operator PM (pm = 1
nvar

, ηm = 20)

is adopted, 25 000 function evaluations are accomplished, and
31 runs of each algorithm test are performed.

V. Results

In this section, we present and discuss the experimental
results obtained by the algorithms, described in Section II, on
the test problems identified in Section III. A comparison of the
results, in terms of attainment surface, dominance rank, and
hypervolume, is provided in Sections IV-A, IV-B, and IV-C,
respectively.

A. Attainment Surface Results

Considering the bi-objective results as a starting point, plots
of median attainment surfaces across the 31 runs of each
algorithm are shown in Fig. 6. These allow visual inspection
of performance in terms of the dual aims of proximity to and
diversity across the global tradeoff surface [36]. For clarity,
PICEA-g, HypE, NSGA-II, and MOEA/D are plotted on the

left, while NSGA-II, ε-MOEA, and rand are plotted on the
right. (NSGA-II serves as a cross-reference.)

Qualitatively, from inspection of Fig. 6, it is clear that rand

is the worst performer. All the other MOEAs have comparable
performances on convergence while different performances on
diversity. Specifically, MOEA/D exhibits the best performance.
PICEA-g and HypE have equivalent performances and both
algorithms are slightly better than NSGA-II on all the bench-
mark functions. ε-MOEA can provide proximity as good as
NSGA-II but its diversity performance is sometimes inferior.
Upon closer examination, on WFG5–8, all the algorithms
exhibit difficulties in converging to the true Pareto front.
On WFG8, none of the algorithms considered are able to
provide a good representation of the tradeoff surface. On
WFG9, only MOEA/D can converge to the most part of
the Pareto front. From the results of WFG5–9, we can see
that bi-objective problems featuring strong multimodality or
nonseparable parameters still present a challenge for best-in-
class MOEAs [45].

B. Statistical Treatment

Performance comparisons between algorithms are made
according to a rigorous nonparametric statistical framework,
drawing on recommendations in [44]. The initial populations
of candidate solutions are generated randomly for every repli-
cation of every algorithm on every problem instance and 31
replications are executed for each algorithm–instance pair. The
approximation sets used in the comparisons are the members
of the offline archive of all nondominated points found during
the search, since this is the set most relevant to a posteriori de-
cision making. For reasons of computational feasibility, prior
to analysis, the set is pruned to a maximum size of 100 using
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TABLE III

Dominance Ranking Results

Objectives WFG Ranking by Performance
2 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

3 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

4 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

2 5 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

6 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

7 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

8 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

9 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

2 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

3 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

4 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

4 5 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

6 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

7 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

8 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

9 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

2 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g RAND 2nd rand

3 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

4 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

7 5 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

6 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

7 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

8 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

9 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

2 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 2nd rand

3 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

4 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

10 5 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

6 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

7 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

8 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

9 1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g rand

the SPEA2 truncation procedure [4]. The approximation sets
used for performance assessment are available for download
at http://www.sheffield.ac.uk/acse/research/ecrg/picea.

For each problem instance, the performance metric values
(dominance rank and hypervolume) of each algorithm are
calculated for each approximation set. Then the nonparametric
statistical approach introduced in [48] is conducted with the
performance metric values. We first test the hypothesis that all
algorithms perform equally using the Kruskal–Wallis test. If
this hypothesis is rejected at the 95% confidence level, we then
consider pairwise comparisons between the algorithms using
the Wilcoxon-ranksum two-sided comparison procedure at the
95% confidence level, employing Šidák correction to reduce
Type I errors [49].

1) Dominance Rank Results: Dominance rank is used to
evaluate the convergence of algorithms. Each approximation
set for each algorithm is given an initial ranking of zero and
then compared to each of the 186 approximation sets generated
(31 sets for six algorithms). The rank value is incremented by
one for every approximation set that weakly dominates the
set being ranked. As a statistical metric, we choose the mean
dominance rank of each algorithm across its 31 runs.

The Kruskal–Wallis test rejects the hypothesis that all
algorithms are equivalent at the 95% confidence level. We
are therefore able to consider pairwise performance compar-
isons between algorithms. Based on the pairwise findings,
we construct partial orderings of the algorithms where, if
algorithms A, B, and C are assigned to a better (i.e., lower)

rank than algorithm D, this implies that all of A, B, and C have
outperformed D (according to the Wilcoxon-ranksum test) on
a particular problem instance (this is a similar approach to
that used by Corne and Knowles [14]). Order of presentation
within a partial ordering is purely alphabetical and has no
performance implications. Any isolated cases of one algorithm
outperforming another, but where a rank difference cannot be
established (i.e., if A outperforms B, but neither A nor B can
outperform C) are described separately in the text.

Using the above comparison methods, the results for dom-
inance rank are shown in Table III. On the whole, the
dominance metric, which requires the weakest assumptions
about decision-maker preferences, is unable to provide any
discrimination, especially on many-objective problems. In de-
tail, at the two-objective level, random search is outperformed
by all the other MOEAs. For four, seven, and ten objectives,
random search performs worse than the other MOEAs only
on the WFG2 problem. On all the other problems, the six
considered algorithms exhibit equivalent performance in terms
of dominance rank.

Considering the detailed pairwise comparisons, some dif-
ferences between the algorithms are revealed. Inspecting the
pairwise comparisons at the two-objective level, MOEA/D,
PICEA-g, and HypE outperform NSGA-II and ε-MOEA,
while NSGA-II performs as well as the other four MOEAs
on WFG6. Similarly, on WFG9, MOEA/D exhibits better
performance than ε-MOEA. However, the performance of
PICEA-g, HypE, and NSGA-II could not be distinguished
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Fig. 8. Box plots of hypervolume results for four-objective instances.

from the performance of any of the other MOEAs, thereby
preventing any partial ordering of the five MOEAs.

Thus, very little information can be obtained from the
dominance rank comparison. A further comparison is made
on the basis of the hypervolume metric.

2) Hypervolume Results: The reference point for calcu-
lating the hypervolume is chosen as the anti-ideal of worst
possible performance in all objectives. For all WFG problems,
the anti-ideal for objective i is 2i + 1. Prior to calculating
the hypervolume for an approximation set, we normalize all
objectives on the range [0 1] using the anti-ideal. We also
express the performance of each algorithm in terms of the
proportion of the globally optimal hypervolume achieved (the
method used to calculate optimal hypervolume depends on
which WFG problem is being considered, and is described
further in the Appendix).

The results of the Kruskal–Wallis tests followed by pair-
wise Wilcoxon-ranksum plus Šidák correction tests based on
the hypervolume metric are provided in this section. The
initial Kruskal–Wallis test breaks the hypothesis that all six
algorithms are equivalent. Therefore, the outcomes of pair-
wise statistical comparisons for two-, four-, seven-, and ten-
objective WFG problems are shown in Tables IV, V, VI, and
VII, respectively. The related partial ordering of algorithms
is constructed using the method previously described, again
a smaller rank value indicates better performance; ordering
within a rank is purely alphabetical.

Box plots [50] of Figs. 7–10 are used to visualize the
distribution of the 31 hypervolume values for the associated
problems. The upper and lower ends of the box are the upper
and lower quartiles, while a thick line within the box encodes
the median. Dashed appendages summarize the spread and

shape of the distribution. Outlying values are marked as “+.”
The box plots allow us to consider absolute performance (in
terms of the proportion of the optimal hypervolume achieved
by each algorithm) in addition to the hypothesis testing around
relative performance.

From the statistical comparison results in Table IV and box
plots in Fig. 7, the following key points can be observed for
two-objective WFG problems.

1) MOEA/D is always among the top performing algo-
rithms except for WFG2, where HypE and PICEA-g are
the best performers.

2) PICEA-g outperforms ε-MOEA and NSGA-II on all the
benchmarks except for WFG8 and WFG9, where the
three algorithms perform comparably.

3) HypE is inferior to PICEA-g on WFG3, 5–7, while it
performs better on WFG8 and comparably on WFG9.

4) The performance of ε-MOEA is worse than (problems
WFG3–7) or at best equivalent to (WFG2, 8, and 9)
other MOEAs.

5) NSGA-II exhibits mixed performance. It is ranked in the
second class on WFG2 and WFG9, but it is worse than
PICEA-g, HypE, and MOEA/D on problems WFG3–
6. Its performance is equivalent to PICEA-g, ε-MOEA
on WFG8 and WFG9. Also, it performs worse than
(WFG8) or comparably to (WFG7 and WFG9) HypE.

6) All five MOEAs outperform random search.
It is clear from Table V and Fig. 8 that for all four-objective

WFG problems, all MOEAs outperform random search. The
performance of PICEA-g remains promising. In detail, except
for WFG8 (MOEA/D is the best), PICEA-g is ranked first on
all benchmark functions, exclusively for WFG3–5, and jointly
with HypE on WFG2, 6, 7, and 9. Reinforcing conclusions
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TABLE IV

Hypervolume Results for Two-Objective Instances

WFG Ranking by Performance WFG Ranking by Performance
1st HypE PICEA-g 1st MOEA/D PICEA-g

2 2nd ε-MOEA MOEA/D NSGA-II 3 2nd HypE
3rd rand 3rd NSGA-II

4th ε-MOEA
5th rand

1st HypE MOEA/D PICEA-g 1st MOEA/D
2nd NSGA-II 2nd PICEA-g

4 3rd ε-MOEA 5 3rd HypE
4th rand 4th NSGA-II

5th ε-MOEA
6th rand

1st MOEA/D 1st MOEA/D
2nd PICEA-g 2nd PICEA-g

6 3rd HypE 7 3rd HypE NSGA-II
4th NSGA-II 4th ε-MOEA
5th ε-MOEA 5th rand

6th rand

1st MOEA/D 1st MOEA/D
8 2nd HypE 9 2nd ε-MOEA HypE NSGA-II PICEA-g

3rd ε-MOEA NSGA-II PICEA-g 3rd rand

4th rand

TABLE V

Hypervolume Results for Four-Objective Instances

WFG Ranking by Performance WFG Ranking by Performance
1st HypE PICEA-g 1st PICEA-g
2nd MOEA/D NSGA-II 2nd HypE

2 3rd ε-MOEA 3 3rd MOEA/D
4th rand 4th NSGA-II

5th ε-MOEA
6th rand

1st PICEA-g 1st PICEA-g
2nd HypE 2nd HypE

4 3rd MOEA/D 5 3rd MOEA/D
4th ε-MOEA 4th ε-MOEA
5th NSGA-II 5th NSGA-II
6th rand 6th rand

1st HypE PICEA-g 1st HypE PICEA-g
2nd MOEA/D 2nd MOEA/D

6 3rd ε-MOEA 7 3rd ε-MOEA
4th NSGA-II 4th NSGA-II
5th rand 5th rand

1st MOEA/D 1st HypE PICEA-g
2nd PICEA-g 2nd MOEA/D

8 3rd HypE 9 3rd ε-MOEA
4th ε-MOEA 4th NSGA-II
5th NSGA-II 5th rand

6th rand

from previous studies, the Pareto-dominance-based NSGA-
II begins to struggle on four-objective problems; it performs
equivalently to MOEA/D on WFG2 and better than ε-MOEA
on WFG3, but exhibits worse performance than both MOEA/D
and ε-MOEA on the remaining benchmark functions.

As the number of objectives increases to 7, we can observe
(see Table VI and Fig. 9) that PICEA-g and HypE outperform
the other three MOEAs. Interestingly, random search still
performs least well in all cases. Upon closer examination, the
findings are as follows.

1) PICEA-g and HypE are ranked first and second for
WFG4–8, respectively. The two algorithms are jointly
ranked in the first class on WFG2, 3, and 9.

2) MOEA/D performs better than (on WFG3, 5, and 7) or at
least equivalent to (on WFG2, 4, 6, and 9) ε-MOEA on

all the benchmark functions. NSGA-II exhibits an infe-
rior performance to ε-MOEA on all tests, except WFG2
and WFG8, where it gives comparable performance with
MOEA/D and ε-MOEA.

3) All the MOEAs have a comparable performance for
WFG2, where absolute coverage of the globally optimal
hypervolume remains at over 80%.

Results for 10-objective WFG problems are shown in
Table VII and Fig. 10. Considering relative comparisons,
random search continues to perform badly and the superiority
of PICEA-g and HypE is more established. The performances
of these two algorithms are statistically better than all the
other algorithms on all benchmark functions except for WFG2,
on which the five MOEAs are all in the first class (as for
WFG2 with seven objectives) and are better than random
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TABLE VI

Hypervolume Results for Seven-Objective Instances

WFG Ranking by Performance WFG Ranking by Performance
1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 3 1st HypE PICEA-g
2nd rand 2nd MOEA/D

2 3rd ε-MOEA
4th NSGA-II
5th rand

1st PICEA-g 1st PICEA-g
2nd HypE 2nd HypE

4 3rd ε-MOEA MOEA/D 5 3rd MOEA/D
4th NSGA-II 4th ε-MOEA
5th rand 5th NSGA-II

6th rand

1st PICEA-g 1st PICEA-g
2nd HypE 2nd HypE

6 3rd ε-MOEA MOEA/D 7 3rd MOEA/D
4th NSGA-II 4th ε-MOEA
5th rand 5th NSGA-II

6th rand

1st PICEA-g 1st HypE PICEA-g
2nd Hypε-MOEAE 2nd ε-MOEA MOEA/D

8 3rd ε-MOEA MOEA/D NSGA-II 9 3rd NSGA-II
4th rand 4th rand

Fig. 9. Box plots of hypervolume results for seven-objective instances.

search. Specifically, PICEA-g and HypE jointly rank in the
first class for WFG3, 4, 7, and 8. PICEA-g is the exclusive
best for WFG5 and WFG6, and, likewise, HypE the exclusive
best for WFG9. Among MOEA/D, ε-MOEA, and NSGA-II,
MOEA/D exclusively gives the best performance on WFG4,
5, 7, and 8. ε-MOEA is somewhat inferior to MOEA/D on
most of the benchmark functions, however, for WFG6 and 9,
it outperforms MOEA/D. The performance of both algorithms
is comparable on WFG3. NSGA-II performs worst on all
benchmark functions except for WFG8, where ε-MOEA is
the worst. In terms of absolute performance, the box plots
show that on all problems except WFG8 and WFG9, HypE

and PICEA-g are still able to achieve over 80% of the
global hypervolume value. A crude random search can achieve
approximately 20% coverage of the optimal hypervolume with
all MOEAs performing better than this for the equivalent
number of candidate solution evaluations.

C. Supplementary Results

To further understand the performance of the algorithms,
we have also separately calculated proximity (as measured by
generational distance (GD) [51]) and diversity (as measured
by the spread metric [2]) measures for the seven-objective
WFG4–9 benchmark functions. The true Pareto front for these
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TABLE VII

Hypervolume Results for 10-Objective Instances

WFG Ranking by Performance WFG Ranking by Performance
1st ε-MOEA HypE MOEA/D NSGA-II PICEA-g 1st HypE PICEA-g
2nd rand 2nd ε-MOEA MOEA/D

2 3 3rd NSGA-II
4th rand

1st PICEA-g HypE 1st PICEA-g
2nd MOEA/D 2nd HypE

4 3rd ε-MOEA NSGA-II 5 3rd MOEA/D
4th rand 4th ε-MOEA

5th NSGA-II
6th rand

1st PICEA-g 1st HypE PICEA-g
2nd HypE 2nd MOEA/D

6 3rd ε-MOEA 7 3rd ε-MOEA
4th MOEA/D 4th NSGA-II
5th NSGA-II 5th rand

6th rand

1st HypE PICEA-g 1st HypE
2nd MOEA/D 2nd PICEA-g

8 3rd NSGA-II 9 3rd ε-MOEA
4th ε-MOEA 4th MOEA/D
5th rand 5th NSGA-II

6th rand

problems is a regular geometric shape that is amenable to
uniform sampling. We sample 20 000 points as the reference
set for calculating the metrics. The statistical tests are based
on the mean values of the performance indicators, and the
same nonparametric procedures are adopted as earlier. The
GD and spread metric results are shown in Tables VIII and
IX, respectively.

MOEA/D is found to achieve the best proximity on four of
the six problems considered; however, it tends to rank quite
poorly in terms of diversity. NSGA-II is found to provide
inferior proximity to random search on all six benchmark
problems, but with a diversity metric that is superior to
random. PICEA-g consistently ranks among the top two for
both proximity and spread, and is the only algorithm under
test to achieve such a performance.

VI. Discussion

The empirical comparison has identified that, from the
representative algorithms considered, PICEA-g and HypE
are presently good options for many-objective optimization.
Meanwhile, MOEA/D exhibits outstanding performance on bi-
objective problems, but has not performed so well in a many-
objective context.

While NSGA-II was seen to outperform random search
in many-objective spaces according to hypervolume, further
interrogation of the seven-objective results has confirmed that
this tends to be based on approximation sets with equivalent
or worse proximity to random search, yet retaining good
diversity. This result was first identified in [5] and confirmed
in [8] and is believed to be due to dominance resistance (in
this case, due to many objectives) coupled with an active
diversity promotion mechanism that favors remote solutions
far away from the global Pareto front. Having said this,
NSGA-II was able to perform quite well in absolute terms on

the many-objective WFG2 benchmark functions. It is known
that standard Pareto-dominance-based approaches can perform
well when the dimensionality of the Pareto front is not many
objective [52] or if the objectives are highly correlated [53],
[54], but these are not characteristics of the WFG2 problem. It
remains unclear why NSGA-II can perform well in this many-
objective space, but understanding this issue may well unlock
further understanding of MOEA performance.

Despite the unremarkable performance of MOEA/D on
many-objective problems, according to hypervolume, the
seven-objective results focusing separately on proximity and
spread show that this algorithm is still very capable at finding
solutions that are close to the global Pareto front. The issue is
a loss of diversity, which is likely to be due to inappropriate
specifications of a priori weight vectors, itself arising from
a general lack of knowledge in the literature about how to
configure the algorithm in many-objective spaces. We explore
this configuration issue further below, as part of a wider
discussion embracing all the algorithms.

As explained in Section II, PICEA-g, HypE, MOEA/D,
and ε-MOEA all have some unique parameters beyond those
normally found in EAs—e.g., NGoal in PICEA-g, Nsp in
HypE, ε in ε-MOEA, and the weight vectors T and nr

in MOEA/D. In the previous sections, we used standard
parameter settings from the literature. In this section, we will
provide some analysis of the influence of these parameters for
the algorithms, to provide a level of validation to our findings.

A. Influence of Parameter Settings for PICEA-g and HypE

The comparison study has identified that, in terms of hyper-
volume, PICEA-g and HypE tend to perform much better than
the other EAs on all of the many-objective WFG tests. The
related parameters NGoal is set to 200, 400, 700, and 1000 for
two-, four-, seven-, and ten-objective problems, respectively,
and Nsp is set to 2000, 3500, and 5000 for four-, seven-,
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Fig. 10. Box plots of hypervolume results for 10-objective instances.

TABLE VIII

GD Results for Selected Seven-Objective Instances

WFG Ranking by GD WFG Ranking by GD
1st MOEA/D 1st MOEA/D
2nd PICEA-g 2nd PICEA-g

4 3rd HypE 5 3rd HypeE
4th ε-MOEA 4th ε-MOEA
5th rand 5th rand

6th NSGA-II 6th NSGA-II
1st MOEA/D 1st PICEA-g
2nd PICEA-g 2nd HypE MOEA/D

6 3rd HypE 7 3rd ε-MOEA
4th ε-MOEA 4th rand

5th rand 5th NSGA-II
6th NSGA-II
1st PICEA-g 1st MOEA/D
2nd HypE 2nd HypE PICEA-g

8 3rd MOEA/D rand 9 3rd ε-MOEA
4th ε-MOEA 4th rand

5th NSGA-II 5th NSGA-II

and ten-objective problems, respectively (on two-objective
problems, the exact hypervolume value is used). However,
such settings perhaps are not the best options. A simple
analysis is provided in this section. Tables X and XI provide
alternative settings for NGoal and Nsp for different problems
and Figs. 11 and 12 present representative experimental results
arising from these different settings when the algorithms are
applied to four-objective problems.

Fig. 11 clearly illustrates that the larger the number of goal
vectors used, the better the performance that PICEA-g can
deliver. However, the improvement is not linear. Similarly,
from Fig. 12, it is observed that the greater the samples are
used, the better the quality of Pareto set approximation that
can be obtained by HypE; these HypE results are similar to

those obtained in [27]. Additionally, for both algorithms, it is
obvious that as the size of NGoal or Nsp increases, there is
a corresponding increase in the resulting computational cost.
Clearly, choice of a suitable value for NGoal or Nsp demands
an appreciation of the tradeoff between computational effort
and performance.

Although only results on four-objective WFG problems
are provided above, similar experiments were performed on
WFG problems with seven and ten objectives, with similar
outcomes.

B. Influence of Parameter Settings for ε-MOEA

On most many-objective problems, ε-MOEA can outper-
form NSGA-II. However, for WFG8-10, it performs worse
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TABLE IX

Spread Metric Results for Selected Seven-Objective Instances

WFG Ranking by Spread WFG Ranking by Spread
1st HypE 1st HypE
2nd ε-MOEA PICEA-g 2nd ε-MOEA PICEA-g

4 3rd NSGA-II 5 3rd NSGA-II
4th MOEA/D 4th MOEA/D
5th rand 5th rand

1st ε-MOEA HypE PICEA-g 1st HypE
2nd NSGA-II 2nd PICEA-g

6 3rd MOEA/D 7 3rd ε-MOEA
4th rand 4th NSGA-II

5th MOEA/D
6th rand

1st ε-MOEA MOEA/D NSGA-II 1st ε-MOEA HypE
2nd HypE PICEA-g 2nd PICEA-g

8 3rd rand 9 3rd NSGA-II
4th MOEA/D
5th rand

Fig. 11. Performance of PICEA-g on four-objective problems, for different numbers of goal vectors.

TABLE X

Parameter Settings of NGoal

No. of Goal Vectors (NGoal)
Objectives (M) M × 10 M × 100 M × 500
2 20 200 1000
4 40 400 2000
7 70 700 3500
10 100 1000 5000

TABLE XI

Parameter Settings of Nsp

Objectives (M) No. of Sampling Points (Nsp)
M × 250 M × 500 M × 1000

4 1000 2000 4000
7 1750 3500 7000
10 2500 5000 10 000

than NSGA-II. The reason for this may be an inappropriate
parameter setting for ε. In this paper, ε values were selected for

TABLE XII

ε-Settings for WFG4-4 Problems

ε = (ε1, ε2, ε3, ε4)
1 ε = 0.2, 0.4, 0.6, 0.8
2 ε = 0.001, 0.002, 0.003, 0.004
3 ε = 1, 2, 3, 4

different test problems in such a way that there are around 100
solutions in the final approximate set S. However, it is always
difficult to specify the correct ε value for each problem. In this
section, the influence of ε values on algorithm performance is
studied. WFG4 with four objectives is taken as an instance.
Table XII lists three groups of ε values. Fig. 13 illustrates how
the hypervolume value (averaged over 31 algorithm runs) for
the three settings changes during the evolutionary process.

From Fig. 13, when ε-MOEA is run with large ε values it
does not perform well because few solutions can be stored in
the archive. Alternatively, when ε-MOEA is run with small
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Fig. 12. Performance of HypE on four-objective problems, for different numbers of sampling points.

Fig. 13. Performance of ε-MOEA and NSGA-II on four-objective WFG4.

ε values, its performance degrades to be similar to that of
NSGA-II, for the reason that no significant difference exists
between the ε-dominance relation and the Pareto-dominance
relation. A similar performance was observed for other WFG
problems.

C. Influence of Parameter Settings for MOEA/D

In the comparison study, MOEA/D did not perform as well
as we expected. The reason for this might be due to the
parameter configurations of evenly distributed weight vectors
and selection or replacement neighbor size.

In a similar way to the original set of experiments described
in Section III, 25 000 function evaluations are taken as the
stopping criterion, the same variation operators are applied,
but this time different weight vectors are used. Each case
is executed 31 times. WFG problems with seven and ten
objectives are chosen as the study cases. Table XIII presents
the number of weight vectors used in this test. Fig. 14 presents

TABLE XIII

Weight Vectors Settings on Seven and

Ten-Objective WFG Instances

Objectives (M) No. of Weight Vectors/H
7 100a 462/5 924/6 1716/7

10 100b 715/4 2002/5 5005/6
aUniformly select 100 weight vectors from weight vector set 924 (H = 6).
bUniformly select 100 weight vectors from weight vector set 2002 (H = 5).

box plots of the hypervolume results; random search serves as
a baseline reference method.

Fig. 14 shows that setting the number of weight vectors as
924 and 2002 for the 7- and 10-objective tests, respectively,
is comparatively a good choice. Moreover, MOEA/D with
100 weight vectors gives the worst performance on all the
test problems; it cannot even significantly outperform random
search on some ten-objective tests. From the experimental
results, it is evident that the performance of MOEA/D varies
significantly, depending on the choice of the number of weight
vectors. The selection of the appropriate number of weight
vectors to be used demands further study.

Turning to the influence of selection neighbor size T and
replacement neighborhood size nr, 20 groups of T and nr

settings are examined on WFG4 with 7 and 10 objectives,
respectively (see Table XIV). The average hypervolume values
arising from 31 runs for each setting are shown in Fig. 15. The
symbol “��” returns the value of a number rounded up to the
nearest integer.

It is obvious that the performance of MOEA/D can be
affected considerably by the choice of T and nr. A similar
conclusion is also found in [9] and [55]. As for the setting
used in the comparison study, for seven-objective problem,
T = �924 × 1%� = 10, nr = �10 × 20%� = 2 is the best
setting, and for 10-objective problem, T = �2002 × 0.5%� =
10, nr = �10 × 20%� = 2 is almost the best setting as well. In
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Fig. 14. Box plots of hypervolume results. (a) WFG2–9 for seven objectives. (b) WFG2–9 for 10 objectives.

summary, we observe that MOEA/D is sensitive to parameter
settings, such as the number of weight vectors, selection, and
replacement neighbor size. Therefore, it is desirable to choose
appropriate parameter values or perhaps introduce adaptive
parameter control strategies to adjust parameter values while
using MOEA/D.

Although we focused on the parameters of the MOEA/D,
it is recognized that the choice of scalarizing function itself
is an important consideration. Ishibuchi et al. identified that
the standard implementation of weighted Tchebycheff scalar-
izing function was often outperformed by the weighted sum
scalarizing function, the augmented weighted Tchebycheff
scalarizing function, and combined use of both these functions
[56].

VII. Findings, Limitations, and Future Research

A. Findings

We have carried out a systematic comparison of six al-
gorithms that included five different classes of MOEAs: a
PICEA-g, a Pareto-dominance-based algorithm (NSGA-II),
an ε-dominance-based algorithm (ε-MOEA), a scalarizing
function-based algorithm (MOEA/D), and an indicator-based
algorithm (HypE). The main findings are as follows.

1) A particular concern with optimization-focused
implementations of coevolution is the potential
for pathologies, such as the Red Queen effect
(subjective fitness improves without any corresponding
improvement in objective fitness or vice versa), cycling
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Fig. 15. Hypervolume results on 7- and 10-objective WFG4.

TABLE XIV

MOEA/D Configuration (T and nr) for WFG4

No. of objectives (M) 7 10
Parameter (H) and subsequent population size (N) H = 6 ⇒ N = 924 H = 5 ⇒ N = 2002
Selection neighborhood size (T ) as % of N T ∈ (0.01 0.02 0.05 0.1 0.2) T ∈ (0.005 0.01 0.05 0.1 0.2)
Competition neighbor size (nr) as % of T nr ∈ (0.2 0.4 0.6 0.8) nr ∈ (0.2 0.4 0.6 0.8)

(subjective fitness exhibits limit cycle dynamics, without
incremental improvement), and disengagement (loss
of fitness discrimination due to the total superiority
of one population) [40], [57]. Fortunately, the fitness
assignment scheme in PICEA-g, based on the approach
of Lohn et al., appears resistant to these issues;
as anticipated, both the candidate solutions and the
preferences can converge toward the Pareto-optimal
front. Fig. 16 shows how hypervolume (normalized by
the true hypervolume value) changes over the course of
the evolution for candidate solutions and preferences.
Note that the preference dynamics tend to slightly lag
the solutions, so the “greyhound” analogy proposed
by Klee and Lamont [41] is not strictly accurate. The
reason for the lag is that preferences that cannot be met
by any solutions are assigned the worst possible fitness
score in the Lohn et al. scheme.

2) The PICEA-g exhibits promising performance for many-
objective problems. It is found to be consistently among
the best algorithms across the test problems considered.
In addition to superior performance, as measured by the
hypervolume indicator, on many-objective problems, it
also offers competitive performance with the popular
NSGA-II in bi-objective environments.

3) The estimated hypervolume IBEA (HypE) gives very
competitive performance on both bi-objective and
many-objective problems. Its performance is close to
PICEA-g and better than other MOEAs on most of the
selected benchmarks.

4) The larger the number of goal vectors NGoal used in
PICEA-g, the better the algorithm performs. Similarly,
the larger the number of sampling points Nsp used in
HypE, the better the algorithm performs. Of course,
for both of these increases, there is a corresponding
increase in computational cost.

5) The concept of ε-dominance is much more effective
than pure Pareto dominance in solving many-objective

problems. Although ε-MOEA does not exhibit the
best performance, it outperforms NSGA-II on most
of the many-objective problems studied. However, the
hypervolume measure of ε-MOEA is not found to be
better than NSGA-II on bi-objective WFG tests. This
may be due to the fact that ε-MOEA is not effective
in obtaining extreme solutions on the Pareto front [34],
[43] or perhaps the ε value is set inappropriately.

6) MOEA/D performs well on two-objective problems.
However, its performance is not particularly notable
on the many-objective problems studied. This might be
explained, partly, by the parameter settings used. The
results of Section V-C demonstrate that MOEA/D is
sensitive to parameters such as the number of weight
vectors and the selection or replacement neighbor size.

7) The classical Pareto dominance and density-based
algorithm (NSGA-II) can perform well on bi-objective
problems. However, its performance is significantly
degraded, in both relative and absolute terms, when
dealing with many-objective problems.

8) In terms of hypervolume, all the MOEAs considered
offer better performance than a crude random strategy.
Note that other studies have found that MOEAs can
degenerate to random search (or possibly worse) on
many-objective problems.

B. Limitations and Future Research

The study has two main limitations. The first is that although
the same number of function evaluations are executed for all
of the algorithms, the population size used in MOEA/D is nec-
essarily different from the other algorithms, which may induce
some bias. The second limitation is the HypE algorithm uses
hypervolume to guide the optimization, yet we have used this
metric as a performance indicator (since it has good properties)
and this might be deemed unfair in relation to other algorithms.
A further minor point to consider is the suitability of the choice
of 25 000 function evaluations as a stopping criterion. It might
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Fig. 16. Illustration of the performance of candidate solutions and prefer-
ences on bi-objective WFG4.

be better to consider alternative termination criteria such as
hypervolume gradient values, although plots of convergence
according to hypervolume (not shown) suggested that reason-
able convergence was achieved within the limit by all algo-
rithms (incremental improvement rates appeared, qualitatively,
small).

With respect to further research, it is our view that first,
there needs to be a systematic analysis of how performance
varies with the tuneable parameters of the algorithms [58],
[59]. This kind of analysis is important to gain insight into: 1)
the robustness of the algorithms and to mitigate the possibility
of misleading findings; and 2) the absolute potential of each
method when tuned to the problem. Second, adaptive parame-
ter control strategies should be investigated; such strategies
have proved beneficial for the performance of EAs [60]–
[62]. Third, the goal vector approach examined in this paper
represents just one possible formulation of the preference-
inspired coevolutionary concept and further research into other
realizations is warranted [42], [33]. Within the existing goal
vector formulation, the requirement to determine the bounds
on the space of goals is a limitation of the method. We have
used known, problem-specific, ideal and anti-ideal vectors
as bounds; in practice, these would need to be estimated,
either via expert domain-specific knowledge or via preliminary
single-objective optimizations. Random generation within such
bounds is arguably inefficient because some goal vectors may
be infeasible and also evolving problem knowledge is not
exploited. Potentially, the goal generator could include genetic
variation operators to improve search efficiency. Fourth, our
findings are based on real-parameter function optimization
problems, but it is also important to assess EMO algorithms
on other problem types, such as many-objective combinatorial
problems, and also, crucially, real-world problems.

VIII. Conclusion

This paper proposed a new concept for solving many-
objective optimization problems: PICEAs. In the algorithms, a
family of preferences were coevolved with candidate solutions,
the preferences gain higher fitness by being satisfied by fewer

Fig. 17. True hypervolume calculation.

candidate solutions, and the candidate solutions gain fitness
by meeting as many preferences as possible. We realized
a specific algorithm based on this concept, PICEA-g, and
compared it rigorously to four best-in-class MOEAs (NSGA-
II, ε-MOEA, MOEA/D, and HypE) and a random search
benchmark on the leading WFG test problems with two,
four, seven, and ten objectives. According to the empirical
results, PICEA-g showed highly competitive performance and
can therefore make a strong claim for use on many-objective
problems.

Appendix

True Hypervolume Value of WFG Problems

The true optimal hypervolume values (hyp∗) for WFG
problems vary by problem, due to the different Pareto-front
geometries employed.

From [45], the Pareto-front shape WFG4–9 is part of a
hyperellipse with radii ri = 2 × i, i = 1, 2, . . . , M. It is a
regular geometry. Therefore, the hyp∗ can be computed by

hyp∗ = V2 − V1

2M
(7)

where V1 is the volume of M-dimension hyperellipsoid and V2

is the volume of M-dimension hypercube, which is constructed
by the reference point anti-ideal and the coordinate origin. As
the volume covered by the Pareto front is only in the first 1

2M

area, i.e., the first quadrant for two dimensions. So V1 must
be divided by 2M . The formula for calculating V1 is given as
follows [63], [64]:

V1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(
M

2
)!

π

M

2
M∏
i=1

ri, M is even

2
(
M + 1

2
)

(M)!!
π

M − 1

2
M∏
i=1

ri, M is odd.

(8)

Taking two-objective WFG4 test as an example, see Fig. 17,
V1 = πr1r2 = π × 2 × 4 = 8π, and V2 = 3 × 5 = 15. So

hyp∗ = 15 − 8π
22 = 8.7168.

As the Pareto fronts of WFG2 and WFG3 are not regular
geometry (WFG2 is disconnected, WFG3 is linear), the above
computation process is not available. However, in [45], the
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authors point out that the optimal solutions of WFG2 and
WFG3 satisfy the condition (9)

Zi=k+1:nvar = 2 × i × 0.35 (9)

where nvar is the number of decision variables and nvar =
k + l , k and l are position and distance parameters. Therefore,
we generate 10 000 × M optimal solutions for M-dimension
WFG2 and WFG3 and then the approximation of hyp∗ can be
calculated using conventional methods [22], [47].
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